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Cells in circulatory systems adhere through a competition between molecular in-
teractions and colloidal repulsion, while the cells arbitrarily deform in the presence
of external fluid forces. The complex coupling of the forces involved, the disparate
length scales at which they act, and uncertainties in the mechanics of cell defor-
mation have complicated the study of cell adhesion. To address these difficulties,
a multi-fluid, front-tracking method with staggered, adaptively refined meshes has
been developed. As a tool to study cell mechanics, the program allows the incor-
poration and testing of different mechanical models of the cell without significant
changes in the setup. As a tool to study cell adhesion, the method models the coupling
of the relevant forces resolving the disparate length scales involved. The method was
validated by simulating various test cases, and the results were found to agree well
with analytical and other numerical solutions. The capabilities of the method are
demonstrated with the simulation of a common cell-mechanics experiment (a mi-
cropipet assay) and a common physiological situation for cell adhesion (the adhesion
of two cells under shear flow). c© 1998 Academic Press

Key Words:cell mechanics; cell detachment; incompressible Navier–Stokes; mi-
cropipet; micropipette; drops; adaptive refinement; immersed boundary method.

1. INTRODUCTION

The transient and specific adhesion of cells is crucial to numerous physiological processes
including cell-mediated immunity, embryogenesis, wound healing, and the spread of cancer.
Understanding what determines the specificity, strength, and occurrence of cell adhesion
could lead to the therapeutic treatment of many disorders, as well as the acceleration of
advances in biotechnological processes. Already, there is much pharmacological effort
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aimed at controlling cell adhesion at a molecular level [1]. In addition, the development
of manufactured devices for use in the human body—such as synthetic vascular grafts to
replace diseased or damaged segments of arteries, cardiac valves, fully artificial hearts, and
other artificial organs—has provided both the need and the opportunity to determine the
forces present in cell adhesion under flow [2].

Previous research has demonstrated that cell adhesion is governed by the coupling of
several physical and biochemical events that occur at drastically different length scales. On
the scale of the cell diameter (∼10µm), the cells deform while immersed in a stream of fluid.
At the gap near the area of contact (∼10 nm), molecules diffuse and react while colloidal
forces act to repel the cells. The complex coupling of these events and the disparate length
scales at which they occur have complicated both experimental and mathematical studies of
cell adhesion. Experimental work ranges from laminar flow chamber and micromanipulation
assays aimed at determining the occurrence of adhesion and at measuring the forces required
to disrupt it, to molecular biology techniques used to characterize the surface molecules
involved in the binding. Assays which relate molecular and colloidal properties to the forces
required to disrupt adhesion are difficult and scarce. A mathematical relationship between
these properties is desirable. Most mathematical models of cell adhesion are based on two
equilibrium models. In one, adhesion is considered to be a competition between the specific
binding of surface molecules and the non-specific repulsion between the cells [3]; in the
other, a relationship between the mechanical properties of a portion of the cell membrane
and adhesive bonds was developed [4, 5]. These models have been combined and extended
to account for some kinetic phenomena [6–8] and for the influence of external flow [9, 10].
Unfortunately, the mathematical work so far treats subsets of the relevant events in cell
adhesion, ignoring others that are equally important. For example, one model [9] includes
all binding dynamics and hydrodynamic flow but neglects cell deformation, while another
model [6] includes both binding dynamics and mechanical deformation but considers only
a portion of the cell membrane.

Further difficulties arise from the fact that the mechanical behavior of most cells is
not well defined and that it varies with cell type and cell status (e.g., whether the cell is
activated or not). Cell deformation affects studies of adhesion by helping determine the size
and geometry of the area of contact, by altering the flow field surrounding the cells, and by
absorbing some of the force intended to disrupt adhesion. Although cellular deformation
has been studied extensively (e.g., [11–13]), the constitutive relationship between stress and
deformation for most cells is still elusive. The common procedure for testing hypotheses
for such a relationship requires that the relationship be establisheda priori and that a new
analytical setup be developed for each test.

A computational model could accommodate alternative models for the cell mechanics,
as well as provide the coupling of the relevant events in cell adhesion. This approach was
used by Fogelson [14] to simulate platelet aggregation under flow. He modeled the platelets
as two-dimensional fluid bodies enclosed by an infinitesimally thin elastic membrane and
surrounded by a fluid of identical properties. However, he made no provisions for varying
the properties of the fluid inside the cell with respect to the surrounding fluid, limiting the
alternatives for mechanical models. Also, while Fogelson’s model includes the activation of
platelets that precedes their aggregation, the adhesive interactions are treated with a simple
model which ignores the different length scales.

This paper describes the implementation of a method that incorporates the most relevant
events involved in the adhesion of cells under flow. Extending Fogelson’s idea, the biological
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cells are modeled as composites of incompressible, Newtonian fluid bodies enclosed by
membranes. Alternative models for the overall deformation of the cell can be constructed
by varying the properties of the internal fluids, by varying the constitutive equation and
material parameters for the mechanics of the membranes, and by varying the number of
internal bodies (which represent the nucleus or other organelles inside the cell).

A multi-fluid program has been developed to describe the behavior of such cells and
the encompassing fluid in both two-dimensional and axisymmetric geometries. The incom-
pressible Navier–Stokes equations are discretized using a finite-volume formulation of a
semi-implicit pressure correction method. The interfaces are tracked explicitly and dis-
cretized independently of the background mesh using the Eulerian–Lagrangian method
developed by Univerdi and Tryggvason [15]. In this method, all membrane processes
are computed on the interfaces and the resultant force is distributed to the background
mesh. This separate treatment, as well as the lower dimensionality of the membranes,
simplifies the alteration of their mechanical properties and the inclusion of additional
processes. To account for the disparate length scales of the problem, the fluid equa-
tions are solved on unstructured Cartesian grids that refine adaptively near the interfaces
[16]. The unstructured meshes allow the adaptation to be performed easily and efficiently,
while the Cartesian elements allow a simpler discretization of the equations, avoiding the
many complications introduced by the transformations usually needed on non-orthogonal
grids.

The combination of front-tracking and adaptive refinement has been used by other re-
searchers to study problems from different fields. For example, a front-tracking method
in which a composite grid is formed by the overlay of the interface mesh on the back-
ground Cartesian mesh has been combined with adaptive refinement to study unsteady
inviscid flows with a collocated variable arrangement [16] and, independently, incompress-
ible viscous flows with a staggered variable arrangement [17]. A variation of the level-set
approach [18] has been combined with a similar Cartesian adaptive-refinement method us-
ing a collocated variable arrangement to study the motion of drops in an incompressible
Newtonian fluid [19, 20]. Level-set methods have also been used with a different type of
Cartesian-adaptive mesh to study incompressible two-phase flows [21]. Our work is the
first report of adaptively refined, staggered meshes used in conjunction with an explicit
interface tracking in which the interfaces are not part of the background grid. Although the
motivation for our work is the adhesion of deformable cells, the method applies to many
other physical systems such as the interactions of drops and bubbles and the swimming of
microorganisms.

In the following section, the governing equations that describe the behavior of incom-
pressible, Newtonian fluids with surface forces are presented. Next, the implementation of
the numerical method is described. The grid generation, the front tracking, and the dis-
cretization of the equations on a staggered mesh are described in Sections 3.1–3.4, while
the boundary conditions are discussed in Section 3.5. The discussion and derivations in
these sections are carried out in two dimensions, and the extension of the algorithm to ax-
isymmetric geometries is presented in Section 3.6. Finally, Section 4 presents the results of
several simulations: the deformation a 2-D drop under shear and the oscillations of a drop
are used to validate the program, while the simulation of a micropipet assay (a common
technique used to study cell mechanics) and two cells adhering under shear are used to
demonstrate the capabilities of the method.
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2. GOVERNING EQUATIONS

The fluids modeled in this work (e.g., the cytosol and extracellular fluids such as plasma,
media or buffers) are incompressible and will be assumed to remain isothermal. The gov-
erning equations that describe the behavior of such fluids are the laws of conservation of
mass, ∮

S
v
⇀ · n⇀ dS= 0, (1)

and momentum,

∂

∂t

∫∫∫
V
ρv

⇀ dV +
∮

S
ρv

⇀

(v
⇀ · n⇀) dS= −

∮
S

p ¯̄I · n⇀ dS−
∮

S

¯̄τ · n⇀ dS+
∫∫∫

V
f
⇀

V dV, (2)

wheret represents time, whilev⇀, p, andρ are the velocity vector, the pressure, and the
density of the fluid, respectively.̄̄I is the identity matrix,V is the volume occupied by the
fluid, S is the surface area formed by the boundary of this volume, andn⇀ is the outward-
pointing unit vector, normal toS. f

⇀

V is the sum of the forces acting on the fluid; although it
has the form of a body force, it also includes the effect of the surface forces due to the front
tracking method used (as will be discussed in Section 3.3).¯̄τ is the stress tensor, which for
a Newtonian fluid in two dimensions is

¯̄τ =


−2µ

∂u

∂x
−µ
(
∂u

∂y
+ ∂v
∂x

)
−µ
(
∂u

∂y
+ ∂v
∂x

)
−2µ

∂v

∂y

 , (3)

whereµ is the dynamic viscosity of the fluid, andu andv are the horizontal and vertical
components of the velocity, respectively.

3. NUMERICAL METHOD

3.1. Grid Generation

The grid-generation code developed by Bayyuket al.[16] is used to generate the grids for
solving the discretized fluid equations. The code uses a quadtree-based algorithm to generate
Cartesian meshes with adaptive refinement and was originally developed for compressible,
inviscid flows. A quadtree structure begins with a root cell which is said to be at refinement
level 1. This root cell is refined by creating four children of equal size, which are said to be
at refinement level 2. Each child can in turn be refined, increasing the refinement level by
one, until the desired grid is generated. All cells have a pointer to their parents and one to
each of their four children, if they exist. From this tree structure most geometric information
as well as the connectivity of the cells can be determined. The state variables are stored at
the leaf cells (those at the bottom of the tree), and all flow-solver computations are done
using these cells. For more details on the data structure see De Zeeuw [22] or Bayyuk [23].

The creation of the grid can be summarized in four steps: (i) a uniform Cartesian mesh
is generated, (ii) points are distributed along each interface, (iii) the intersections between
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FIG. 1. Staggered variable arrangement near refinement interfaces with the corresponding control volumes.

the interface(s) and the uniform Cartesian mesh are computed, and (iv) the Cartesian mesh
is refined appropriately. At each time step, each interface can deform and the background
mesh is adapted accordingly. Effectively, the interfaces move through a stationary grid, and
this provides a very efficient method to generate grids for arbitrarily deforming bodies. For
more details on this procedure see Bayyuket al. [16] or Bayyuk [23].

For the problems studied in this work, cells are refined using two criteria: intersection by
the interface, and proximity either of adjacent interfaces or of an interface and wall. The first
provides a method to control the sharpness of the interface, while the second provides the
resolution needed to study interfacial phenomena efficiently. Additional refinement criteria
based on the gradient of the state variables could be used to achieve accuracy in more
complicated flows (e.g., [16, 24]). In the work of Bayyuk and Powell, the interfaces appear in
the background grid, forming irregularly cut cells. In this study, the complications introduced
by these cut cells are avoided by keeping the interfaces separate from the background mesh
and distributing the quantities carried by the interface to points in the Cartesian mesh. The
implementation of the distribution of these quantities is the subject of Section 3.3.

3.2. Implementation of the Staggered Variable Arrangement

A diagram of a staggered, refined mesh is shown in Fig. 1. The pressure, density, and
viscosity are located at the cell centroids; the horizontal component of the velocity is placed
at the center of the vertical cell faces; and the vertical component of the velocity is located
at the center of the horizontal cell faces.

The refinement has been restricted so that the refinement levels of neighboring cells do
not differ by more than one. This restriction is effectively a smoothing of the grid and not
only simplifies the implementation of the staggered mesh, but also prevents inaccuracies
introduced by large size differences between adjacent cells [22]. With this restriction, each
face of a cell can have a maximum of two nodes. In order to accommodate the staggered
location of the unknowns into the quadtree data structures used in the grid generation code
(which are cell-based), each cell is assigned the nodes at its east and north faces, along with
the node at its centroid. Hence, each cell contains five pointers to variables, and whenever
a face has only one node (when the refinement level of the face neighbor is greater than or
equal to that of the cell), one of the pointers is set to NULL.

3.3. Front Tracking

The method used to track the interfaces was originally developed by Peskin and McQueen
[25] and was extended to fluids with different densities and viscosities by Univerdi and
Tryggvason [15]. In this method, a moving, unstructured mesh is used to track the interface,
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FIG. 2. Sketch of the discretization of the interface. The subscripti represents the segment number,s is
the coordinate along the interface, and the subscripts 0 and 1 are the endpoints of each segment numbered in a
counterclockwise manner.

and a stationary Cartesian mesh is used to solve the transport equations. The two meshes are
kept separate, and information transfer is required from one mesh to another. This transfer is
as follows: (i) a resultant surface force is computed on the interface and must be distributed
to the Cartesian mesh; (ii) the velocity of the fluid is computed on the background mesh
and must be interpolated to the interface; and (iii) the location of the jumps in density
and viscosity is determined by the interface and must be communicated to the background
mesh.

The discretization of a two-dimensional interface is sketched in Fig. 2. The coordinates
at the endpoints of each segment and the property variables at the centroids are stored. All
membrane processes and properties are computed using this mesh and the effects of the
membrane on the fluid are transmitted through a resultant surface force,f

⇀

S. For example,
at the interface between two fluids [26],

f
⇀

S = ∂(σe⇀t )

∂s
ds. (4)

The discretization of this force on the interface mesh of Fig. 2 results in the following
expression for each segment,

f
⇀

Si = (σe⇀t )i,1− (σe⇀t )i,0, (5)

where(σe⇀t ) is the product of the surface force coefficient and a unit tangent vector at one
endpoint of the segment. This product is computed by a linear interpolation of similar terms
evaluated at the centroid of the two segments that share the endpoint (the surface tension
coefficient is stored at that location, whereas the unit tangent vector is evaluated by finding
the vector connecting the endpoints in a counterclockwise manner and normalizing it by
the length of the segment).

The resultant force per unit surface element must be distributed to the Cartesian grid
and incorporated into Eq. (2) through the force term,f

⇀

V . This is done by transforming
the surface force to a volume force using an area-weighted extrapolation. Since the mesh
is staggered, the component of the force acting in the horizontal direction is distributed
to theu-nodes (the nodes containing the horizontal component of the velocity), while the
y component is distributed to thev-nodes. The procedure is as follows: (i) the quadtree
is searched to find the cell that encloses the midpoint of an element in the interface; (ii)
by searching the neighbors of the cell just found, the four nodes closest to the midpoint
of the element are found; (iii) using a bilinear transformation, the quadrilateral formed by
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FIG. 3. Distribution of the surface force: (a) Interface overlaid on the Cartesian mesh. The open circles
indicate theu-nodes, to which thex-component of the force is interpolated; the crosses mark thev-nodes, to
which they-component of the force is interpolated; and the filled square represents the midpoint of an element
of the interface. (b) Quadrilaterals formed by thev-nodes (top) andu-nodes (bottom) which are used to compute
the fractional areas. (c) Mapping of the quadrilateral formed by theu-nodes around the interface point to a square
with vertices [(1, 1), (−1, 1), (−1,−1), (1,−1)].

these nodes is mapped to a unitary square where fractional areas are computed1; (iv) these
fractional areas are used to distribute a component of the surface force to the four nodes
found in step (ii). This procedure is sketched in Fig. 3. The expression for the force per unit
fluid element assigned to eachu-node is

( f
⇀

V · i⇀)k = 1

Vk
( f

⇀

S · i⇀)i Ak, (6)

wherei
⇀

is a unit vector in the horizontal direction,k indicates each of the fouru-nodes
forming a quadrilateral around the midpoint of thei th element on the interface,Vk is the
size of the control volume around thekth u-node, andAk is the fractional area associated
with thekth u-node(

∑4
k=1 Ak = 1), as shown in Fig. 3c. A similar expression is used for

they-component of the force. This distribution is performed for all interface elements, and
the contributions of different elements to the same node in the Cartesian mesh are added.

The local fluid velocity is interpolated to the endpoints of each interface segment using
an area-weighted interpolation which incorporates most of the features developed for the
distribution of the surface force described above. The expressions for the components of
the velocity at endpoint 0 of thei th element are

ui,0 =
4∑

k=1

uk Ak (7)

1 The actual fractional areas would require mapping back to the real space, but after some testing it was found that
the areas in the transformed space are a very good approximation to the real ones for the quadrilaterals encountered
in the meshes of this work. To avoid further complications in the setup and for efficiency, the fractional areas in
the transformed space were used.
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vi,0 =
4∑

j=1

v j Aj , (8)

wherek refers to each of the fouru-nodes forming a quadrilateral around the endpoint, and
j refers to the correspondingv-nodes (as sketched in Fig. 3b). The appropriate nodes of the
Cartesian mesh and the fractional areas are found using the same method described for the
distribution of the surface force.

The density and viscosity in the computational cells which are not intersected by any
front are assigned according to the fluid regime in which the cell lies. In intersected cells,
these variables are computed using an area-weighted average,

ρk = 1

Nk + 1

Nk+1∑
i=1

{
1

Ai
(ρL AL + ρRAR)i

}
(9)

µk = 1

Nk + 1

Nk+1∑
i=1

{
1

Ai
(µL AL + µRAR)i

}
, (10)

whereNk is the number of cells neighboring cellk, i = Nk+ 1 refers to cellk, Ai = (AL +
AR) is the total area of celli , and the subscriptsL andR represent the values at each side
of the interface on thei th cell (if thei th cell is not intersected, eitherAL or AR is zero). The
cell neighbors were included in the averaging as a form of smoothing to avoid sharp jumps
in the density and viscosity, which can produce spurious spikes in the solution. This method
of reconstructing the density and viscosity takes advantage of the geometric information
provided by the grid-generation code (the fluid or fluids that occupy a cell, and the geom-
etry of the intersection) [23]. An alternative method for this reconstruction is described in
Refs. [15, 26].

The current implementation of the grid-generation code prohibits intersected boundary
cells and cells intersected by more than two interfaces (this latter restriction will be lifted in
future work). This is enforced by defining a contact threshold to be a distance 1.5 times the
side of a computational cell. The velocities of interfacial points that, at their new location,
would lie within a contact threshold of other interfaces or solid boundaries are adjusted using
the following rules: (i) if a point will get within a contact threshold of a solid boundary,
the component of its velocity normal to the boundary is set to zero; (ii) if two points (on
separate interfaces) will get within a contact threshold of each other, the velocity of both
points is set to the average of the two. The first of these rules effectively imposes an inviscid
boundary condition for the solid wall one contact threshold away from the boundary. The
second rule assumes that portions of the interfaces “collide” when the distance between
them is equal to the contact threshold, that they “stick” together for one time step after
the collision, and that the portions colliding have equal mass. In most problems, these
assumptions are justified since the velocity adjustments needed are typically very small
and the errors introduced decrease with the size of the mesh, the size of the segments,
and the size of the time step. In cases in which many velocity adjustments are performed,
these adjustments might significantly alter the volume of the bodies. One way to correct this
problem is to communicate the velocity adjustments on the interface to the immersing fluids.
This can be done by including the force needed to displace the fluid between the unadjusted
and adjusted locations of each segment into the total surface force,f

⇀

S (Eqs. (4)–(6)).
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The number of interface points is computed automatically so that the size of each segment
on the interface is at most the length of a face of the smallest computational cell on the
Cartesian grid. This guarantees that there is at least one interface point per cell. In the
cases tried, the authors have found that the difference in the solution between one and two
interface points per cell is small, and using more than two points does not affect the solution
significantly.

Since the points on the interface move independently of one another, special measures
must be taken to prevent two points from becoming unevenly spaced. This is accomplished
simply by redistributing the points along the interface, while maintaining the total number
of segments constant. The quantities carried by the interface are adjusted as needed. This
redistribution is performed after several iterations (the exact number of iterations is problem
dependent).

3.4. Discretization of the Incompressible Navier–Stokes Equations

3.4.1. Finite-volume discretization.The following finite-volume discretization of
Eqs. (1) and (2) is used, ∑

faces

v
⇀ · n⇀1S= 0 (11)

(ρv
⇀V)n+1− (ρv⇀V)n

1t
= −

∑
faces

( ¯̄Fconv · n⇀1S)n −
∑
faces

( ¯̄Fpress· n⇀1S)n+1

+ θ
∑
faces

( ¯̄Fvisc · n⇀1S)n+1+ (1− θ)
∑
faces

( ¯̄Fvisc · n⇀1S)n + f
⇀

V,

(12)

whereV is the size of the control volume;1Sis the size of a face;n⇀ is the outward normal to
the face;θ is a constant(0≤ θ ≤ 1) used to control the degree of implicitness used for the
viscous terms; and the total flux has been divided into three components—convective fluxes
( ¯̄Fconv), pressure fluxes( ¯̄Fpress), and viscous fluxes( ¯̄Fvisc)—to facilitate the discussion in
the following section. These fluxes are defined as

¯̄Fconv=
[
ρu2 ρuv
ρuv ρv2

]
¯̄Fpress=

[
p 0
0 p

]
(13)

¯̄Fvisc =


2µ
∂u

∂x
µ

(
∂u

∂y
+ ∂v
∂x

)
µ

(
∂u

∂y
+ ∂v
∂x

)
2µ
∂v

∂y

 ,
whereu andv are thex- andy-components of the velocity vector, respectively.

Since the biological problems of interest occur at low Reynolds numbers, the convective
terms do not enforce a stringent stability constraint on the time step, and, by choosing
θ ≥ 1

2 in Eq. (12), the viscous terms are unconditionally stable. In the cases tried so far, the
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restriction on the time step has been due to the membrane forces. Therefore, the condition

1t < minimum over all intersected cells

(
c

√
1xρn+1

fV

)

is imposed on the time step, wherefV is the magnitude of the force per unit volume defined
in Eq. (6),1x is the length of the computational cell,ρ at the newest time level is defined
by Eq. (9), andc is a safety factor. This is a CFL-like condition based on the acceleration
of the fluid due to the surface forces. This condition is designed to prevent any particle of
fluid and any interface point from moving more than one cell length at each time step.

In the staggered mesh, the control volume used for conservation of mass is centered at
the cell centroid, the one for the conservation of momentum in thex-direction is centered
at the east face, and the one for conservation of momentum in they-direction is centered
at the north face (Fig. 1). The size of the control volume forp is always the same as the
computational cell in whichp is located, whereas the size of the control volume aroundu
or v is the same as the smallest cell that shares the face in which the variable is located. In
what follows, the notation

∑
facesn

⇀′1S′ will be used for control volumes around the velocity
variables, and

∑
facesn

⇀

1Swill be for control volumes around the pressure.

3.4.2.Pressure correction algorithm.A method similar to the pressure-implicit with
splitting of operators (PISO) algorithm developed by Issa [27] is used to couple Eqs. (11) and
(12). This method is also similar in nature to the second-order projection method developed
by Bell et al. [28]. It allows the simulation of the low Reynolds number flows often seen
in biological situations without an excessive penalty in the size of the time step. To derive
this method in a finite volume formulation, two auxiliary velocities are defined based on
Eqs. (12)–(13) as

ρn+1v
⇀0Vn+1− (ρv⇀V)n

1t
= −Fn

conv−Fn
press+ θF 0

visc+ (1− θ)Fn
visc+ f

⇀

V (14)

and

ρn+1v
⇀k+1Vn+1− (ρv⇀V)n

1t
= −Fn

conv−Fk+1
press+ θ

(
acv

⇀k+1+ Fk
visc

)+ (1− θ)Fn
visc+ f

⇀

V,

(15)

where

Fconv=
∑
faces′

( ¯̄Fconv · n⇀′1S′) (16)

Fpress=
∑
faces′

( ¯̄Fpress· n⇀′1S′) (17)

Fvisc =
∑
faces′

( ¯̄Fvisc · n⇀′1S′) = acv
⇀+ Fvisc (18)

and acv
⇀ and Fvisc are the diagonal and non-diagonal terms ofFvisc, respectively. The

superscriptk is used since the auxiliary velocity must be corrected more than once in order
to obtain a velocity atn+ 1 which is very close to divergence-free.
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Two types of correction equations are obtained. The first is obtained by subtracting
Eq. (14) from (15) atk = 0, the result of which is(

ρn+1Vn+1

1t
− θac

)
(v
⇀1− v⇀0) = −(F1

press−Fn
press

)
. (19)

The second is derived by subtracting (15) atk from the same equation atk+ 1. This gives(
ρn+1Vn+1

1t
− θac

)
(v
⇀k+1− v⇀k) = −(Fk+1

press−Fk
press

)+ θ(Fk
visc− Fk−1

visc

)
. (20)

Pressure equations are obtained by taking the discrete divergence of the correction equa-
tions and enforcing continuity for allv⇀k, k ≥ 1. The two pressure equations are∑

faces

{
1

C0

(
F1

press−Fn
press

) · n⇀1S
⇀

}
=
∑
faces

{v⇀0 · n⇀1S
⇀} (21)

∑
faces

{
1

C0

(
Fk+1

press−Fk
press

) · n⇀1S
⇀

}
=
∑
faces

{
1

C0
θ
(
Fk

visc− Fk−1
visc

) · n⇀1S

}
, (22)

where

C0 =
(
ρn+1Vn+1

1t
− θac

)
.

The algorithm consists of solving Eqs. (14), (21), and (19) sequentially to obtainv
⇀1,

and iterating Eqs. (22) and (20) until either theL2 norm of the velocities and the pressure
converge to a certain criteria(∼10−6 for the velocities and∼10−4 for the pressure) or until
the maximum number of iterations is reached (10 or fewer iterations produced good results
in the cases tried). For more details on this method see Issa [27]. Note that settingθ = 0
produces an explicit pressure correction method.

The matrices generated by this algorithm are solved using the package, SPARSKIT, de-
veloped by Saad [29]. The modules for incomplete LU factorization and conjugate gradients
are used in this work.

3.4.3.Computational molecule and interpolations.Far from refinement interfaces, the
computational molecules shown in Fig. 4 are used to formulate Eqs. (14), (19), and (20)
around the velocity control volumes. Using the notation in this figure, the flux terms for the
x-component of the velocity (u) around the control volume shown in Fig. 4a can be written
as

Fconv=
{
ρe

(
ue+ uc

2

)2

− ρc

(
uc + uw

2

)2

+
(
ρc + ρe+ ρne+ ρn

4

)(
un + uc

2

)(
ve+ vc

2

)

−
(
ρs + ρse+ ρe+ ρc

4

)(
uc + us

2

)(
vse+ vs

2

)}
h (23)

Fpress= (pe− pc)h (24)

Fvisc = acu+ Fvisc, (25)



               

GRID ADAPTIVE FRONT TRACKING METHOD FOR CIRCULATING CELLS 357

FIG. 4. Computational molecules used in the flow solver: (a) variables needed to solve the equations foru;
(b) variables needed to solve the equations forv. (The shaded lines denote the control volumes.)

whereh is the length of any of the faces of the control volume, and the diagonal and
non-diagonal terms ofFvisc can be written as

acu =
[
− 2µe− 2µc −

(
µc + µe+ µne+ µn

4

)
−
(
µs + µse+ µe+ µc

4

)]
uc (26)

Fvisc = 2µeue+ 2µcuw +
(
µc + µe+ µne+ µn

4

)
(un + ve− vc)

−
(
µs + µse+ µe+ µc

4

)
(−us + vse− vs). (27)

The formulation of thex-component of Eqs. (14), (19), and (20) is completed by setting
ρ at the node foruc to (ρe+ ρc)/2 andV = h2. Similar expressions can be written for the
y-component of the velocity [30].

The equations for the pressure (Eqs. (21) and (22)) are a composite of the terms already
defined. These equations are built by stepping through the faces of the control volume for
the pressure, and setting the appropriate terms using the control volume of each velocity
component encountered. For example, Eq. (21) can be written as(
(ρe+ ρc)h2

u

21t
+ θ
[
2µe+ 2µc+ 2µc+ 2µe+ µne+µn+µs+µse

4

])−1

(1pe−1pc)hp

+
(
(ρn+ ρc)h2

v

21t
+ θ
[
2µn+ 2µc+ 2µc+µe+ µne+ 2µn+µw +µnw

4

])−1

× (1pn−1pc)hp− LHSW− LHSS = u0
chp + v0

chp−RHSW−RHSS, (28)

where the1 in front of the pressure terms indicates the difference between the values at two
iterations (time leveln andk iteration 1 in this case); andhu, hv, andhp are the sizes of one
of the faces of the control volumes around theu-, v-, andp-nodes, respectively. The terms
for the east and north faces have been written explicitly (recall that only the east and north
faces are associated with each cell), whereas the remaining terms (LHSW, LHSS,RHSW,
and RHSS) are evaluated by constructing similar computational molecules centered at the
west and south neighbors.
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FIG. 5. Interpolations of cell-centered variables: (a) interpolation to a location inside a cell; (b) interpolation
to a vertex.

Since all the discretized equations can be written in terms of the variables defined in this
computational molecule, where the distance between each class of unknown is equal to
h (the length of a side of the appropriate control volume), this computational molecule is
used as the basis for the flow solver. Near refinement interfaces, where the size of adjacent
control volumes varies, independent computational molecules are constructed with respect
to each of the components of the velocity, and interpolations are defined to obtain the missing
values. These interpolations have been divided into two main classes: (i) interpolations of the
variables located at the cell centroid (pressure, viscosity, and density), and (ii) interpolations
of the variables located at the cell faces (thex- andy-components of the velocity).

The first type of interpolation is sketched in Fig. 5. When the interpolated value lies inside
a computational cell, as in Fig. 5a, the three closest values that enclose the point of interest
when connected (1, 2, and 3 in the figure) are used to form a triangular linear element for
the interpolation. Instead of computing the shape functions for such an element, the regular
structure of the grids is used to simplify the expressions for the interpolations reducing the
number of arithmetic operations to a linear interpolation to the vertex closest to the location
of the interpolation followed by an average with the value at the cell centroid (Fig. 5a). For
example, following the notation in Fig. 5a,

pa = 1

s23
(p3s2a + p2s3a) (29)

p∗ = 1

2
(p1+ pa), (30)

wheresi j is the distance betweeni and j , which can be determined from the refinement
levels of the respective cells. If cell 2 is at the same refinement level as cell 3, thens2a/s23 =
s3a/s23 = 1/2. If cell 2 is more refined than cell 3, thens2a/s23 = 1/3 ands3a/s23 = 2/3.
Finally, if cell 2 is less refined than cell 3, thens2a/s23 = 2/3 ands3a/s23 = 1/3. Again,
due to the restrictions in refinement imposed by the grid-generation code, these are the only
values the distance fractions can attain. Equations (29) and (30) produce an expression for
the interpolated value which is exactly the same as if the shape functions were used.

If the position of interpolation of the cell-centered variable lies at the vertex of a cell, as
shown in Fig. 5b, the four cells sharing the vertex are used in the interpolation. The variables
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FIG. 6. Interpolations of face-centered variables: (a) interpolation to a location inside a cell using four nodes;
(b) interpolation to a location inside a cell using three nodes; (c) interpolation along a face.

diagonal to each other are interpolated linearly to obtain two values at the vertex, and the
two values are averaged; i.e.,

p∗ = 1

2

[(
s∗3
s13

p1+ s∗1
s13

p3

)
+
(

s∗4
s24

p2+ s∗2
s24

p4

)]
. (31)

This interpolation is consistent with the implementation of the interpolation within a cell
defined above.

The interpolations of the unknowns located at the cell faces (u andv) can also be per-
formed in a combination of linear interpolations and averages. The most complicated case
is sketched in Fig. 6a, where the interpolated value is found as follows:

va = s2a

s12
v1+ s1a

s12
v2 (32)

vb = s4a

s34
v3+ s3a

s34
v4 (33)

v∗ = sb∗
sab
va + sa∗

sab
vb. (34)

The rest of the cases are subsets of these operations (e.g., Figs. 6b and 6c). In the cases
where three values are used in the interpolation, as in Fig. 6b, the interpolation coincides
with that of a linear triangular element.

Similar interpolations are also used to transfer state variables from parent to children and
vice versa in the adaptation of the grid. When a cell is unrefined the cell-centered variables
are interpolated using Eq. (31) (where 1, 2, 3, 4 correspond to the NW, SW, SE, NE children,
respectively), and the face variables are interpolated using an equation similar to Eq. (32) for
each face of the parent cell (where the values on the children’s faces which overlap with the
parent’s faces are used in the interpolation). When a cell is refined, Eqs. (29), (30) are used
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FIG. 7. Interpolations during grid adaptation: (a) refinement (arrows that do not begin at a node use information
from neighboring cells); (b) unrefinement.

four times (once with respect to each vertex of the parent cell) to obtain the cell-centered
variables of the children, and equations similar to (32)–(34) (depending on the neighbors
of the parent cell) are used to obtain the face variables of the children. These operations are
sketched in Fig. 7.

3.5. Boundary Conditions

The current capabilities of the code are such that the boundaries must align with the
Cartesian grid; therefore, only vertical and horizontal boundaries are allowed. Due to the
staggered mesh arrangement, thex-component of the velocity has boundary values which
lie on the vertical boundaries and are half a cell past horizontal ones, while the opposite
is true for they-component of the velocity. Pressure boundary values are needed at ghost
points half a cell past all the boundaries.

Velocity components which lie on the boundary are set to a constant at inflow and solid
boundaries. At outflow and far field boundaries, these velocity components are evaluated
in such a way that mass is conserved in the cell in which they lie. For the convective terms,
the ghost values of the velocities at inflow and solid boundaries are computed so that a
linear interpolation with the closest internal value gives the value specified at the boundary
(reflection boundary conditions). These values, however, are not used in the computation of
the viscous terms to avoid deterioration in the global accuracy of the solution [31]; instead,
the gradient of the velocity components at the wall is derived by using a second-order,
one-sided difference approximation. Substitution into the central difference term used for
the viscous terms produces the following ghost value forv,

vg =
(

21xgb

1x21

1x2b

1x1b
− 1xgb

1x1b

)
v1− 21xgb

1x21

1x1b

1x2b
v2

+
[
1+ 1xgb

1x1b
− 21xgb

1x21

(
1x2b

1x1b
− 1x1b

1x2b

)]
vb, (35)

wherevb, v1, andv2 are the values of they-component of the velocity at the boundary,
a cell just inside the boundary, and the second interior cell in a direction normal to the
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boundary, respectively;1xi j is the distance between nodesi and j . A similar equation can
be written foru. Finally, the ghost values of the velocities at outflow and far field boundaries
are set equal to the closest interior value. This is equivalent to saying that the gradient of
the velocity normal to the boundary is equal to zero.

Since the equations for the auxiliary velocities (Eqs. (14) and (15)) are consistent with
the momentum equation (Eq. (2)), the boundary conditions described above are also valid
for the auxiliary velocities. Using this fact, the boundary conditions for the pressure at solid
and inflow boundaries can be derived by setting up the correction equations (Eqs. (19) and
(20)) at the boundary and canceling the appropriate terms. AssumingFk

visc−Fk−1
visc ≈ 0 at the

boundaries, and that at time= 0, pg = p1, then the pressure at the ghost cell can be set equal
to the internal value. At outflow and far field boundaries, the value of the pressure is specified.

The computational molecule of Fig. 4 requires ghost values for the density and the
viscosity. These values are simply set equal to the value at the cell closest to the boundary.
Far from the interfaces, this corresponds to an extension of the domain. Near the interfaces,
this corresponds to reflecting boundary conditions (in the problems studied, the interfaces
only approach solid boundaries).

The boundary conditions for the pressure and the velocity are computed implicitly. This
is done by expressing the boundary values as linear functions of the internal variables, e.g.,

ubdry = a0+
N∑

i=1

ai ui , (36)

whereui are the internal variables andai are constant coefficients, and storing the coefficient,
as well as pointers to the structures containing the internal variables (which also contain
pointers to the matrix location of the variables) during the evaluation of the boundary
conditions. The boundary values are then directly incorporated into the algorithm described
in the previous sections.

3.6. Extension to Axisymmetric Geometries

The discrete divergence of a quantity,Q, in axisymmetric geometries (where the line of
symmetry isx= 0) can be written as

1

ycV

∑
faces

{Q · n⇀yf1S}, (37)

whereyf and yc are they-coordinates at the midpoint of the face and at the centroid of
the control volume, respectively. Using this definition, the finite volume formulation of the
equations can easily be extended to axisymmetric geometries as follows: Eqs. (11) and (12)
become ∑

faces

(v
⇀ · n⇀yf1S) = 0 (38)

(ρv
⇀ycV)n+1− (ρv⇀ycV)n

1t
= −

∑
faces

( ¯̄Fconv · n⇀yf1S)n −
∑
faces

( ¯̄Fpress· n⇀yf1S)n+1

+ θ
∑
faces

( ¯̄Fvisc · n⇀yf1S)n+1+ (1− θ)
∑
faces

( ¯̄Fvisc · n⇀yf1S)n

+ f
⇀

V + H
⇀

V, (39)
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where

H
⇀ =

 0
pn + pc

2
− (µn + µc)vc

yc

 . (40)

With respect to the derivation of the PISO algorithm described in Section 3.4.2, the pressure
source team is included inFpress, while the velocity source term is treated asFvisc and is
included in the diagonal terms,ac. With this redefinition of terms, and includingyc in the
time derivative terms andyf in the summation of fluxes, Eqs. (14), (19), and (20) have
the same form as before. The pressure equations (21), (22) include an additionalyf as a
multiplier for the terms in the summations.

To generalize the code, the algorithm was actually implemented including all of the terms
needed for the axisymmetric equations. To simulate two-dimensional problems,yf andyc

are set to 1 andH
⇀

is set to [00 ].
The expression for the surface force can also be easily extended to axisymmetric geome-

tries. For example, Eq. (5) becomes

f
⇀

Si =
1

yc
[(σe⇀t y)i,1− (σe⇀t y)i,0− σc1si j

⇀

]. (41)

4. VALIDATION AND RESULTS

In this section the results of simulations of several problems are presented. The first
two problems are the deformation of a two-dimensional drop under shear flow and the
oscillations of an axisymmetric drop driven by surface tension. These problems are used
to validate the code and to provide estimates for the efficiency and convergence behavior
of the method. For these test cases, the surface force is due to the interface between fluids
and is defined and discretized as in Eqs. (4), (5), and (41). The last two problems are a
typical single-cell-mechanics experiment (modeled as axisymmetric) and the adhesion of
two biological cells under shear flow (modeled as two-dimensional). The resultant surface
force for each of these cases will be described in Sections 4.3 and 4.4. These two problems
demonstrate the capabilities of the method to study the mechanics and adhesion of biological
cells.

4.1. Deformation of a 2-D Drop under Shear

In this problem, a two-dimensional drop deforms in a linear flow field caused by the
relative motion of parallel walls (the effects of gravity are neglected). The drop is initially
circular and the flow field is generated by moving the upper wall while keeping the bottom
one stationary. The east and west boundaries are periodic. This test case is relevant to the
study of cell adhesion since the same boundary conditions can be used to model the parallel
plate flow chambers commonly used experimentally. The parameters of the problem are
set as follows: the velocity of the upper wall,vw = 3 cm/s; the density ratio between the
drop and the outer fluid,ρd/ρo= 2, the viscosity ratio between the drop and the outer
fluid, µd/µo= 1; the surface tension coefficient,σ = 1 g/s2; and the initial radius of the
drop,rd= 1cm. The computational domain is a square with−4≤ x≤ 4 and−4≤ y≤ 4.
On output, the shape of the drop, the pressure contours, and the contours of they-component
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of the velocity (v) are examined. They-component of the velocity was chosen instead of
the speed because the drop distorts the linear velocity profile only slightly, and the effects
are best seen in they-component.

The results from this problem were compared to the results using a similar method
implemented on structured grids (this latter implementation has been validated and used
extensively [e.g., [15, 32, 33]]). The problem was run on each code using identical grids of
128 by 128 cells (all the cells in the code of this work were set to a refinement level of 8)
on a square domain 8 cm in length, and excellent agreement was found between the results
[33]. The adaptively refined code was found to use about 4 times more computational time
per cell than the structured code due to the overhead of local refinement. However, since
the adaptively refined code is capable of achieving similar results as the structured code
with about 16 times fewer computational cells (as will be discussed in the next paragraph)
the overall efficiency of the adaptively refined code is about 4 times better.

The effects of refinement on the solution were studied by simulating this problem on three
different grids: one grid with local refinement near the interface (largest refinement level
of 8, and smallest of 5), and two without (a fine mesh where all the cells are at refinement
level 8, and a coarse mesh where the cells are at 5). The coarse mesh has 256 cells, the
locally refined mesh contains 998, and the fine mesh has 16,384. These grids are shown
in Fig. 8. The corresponding pressure andy-velocity contours at time= 2.4 s are shown
in Fig. 9. This figure shows how the solution obtained using the refined mesh is much
closer to the solution obtained using the finer mesh than the coarser mesh, particularly
near the location of highest curvature in the drop. The pressure is distorted slightly by the
refinement interfaces, where there is a slight loss of consistency in the discretization of
second derivatives due to the linear interpolations used. The value of the pressure gradient,
however, is only affected locally (right at the refinement interface), and the velocities are not
affected significantly. The inconsistency at the refinement interfaces could be corrected by
using quadratic interpolations instead of linear, but these interpolations would complicate
the setup, would have to be linearized for the PISO algorithm, and could lead to positivity
problems [34].

Figure 10 shows an overlay of the shape of the drops at time= 2.4 s for each grid. The
shape obtained using the coarser mesh is more elongated, while the other two are almost
indistinguishable.

4.2. Oscillating Drop

In this problem, the surface of a drop is perturbed and oscillates due to surface tension
forces. These oscillations have been analyzed mathematically by Lamb [35]. To simulate
the problem, the drop was initialized to an ellipsoid and far field conditions were enforced at
all boundaries of the domain. The initial conditions selected correspond to the simplest and
most important mode of oscillation (a wave number of two). This problem has been used
as a test case in the literature by others modeling multiple fluids [18, 32]. The existence of
an analytical solution provides a rigorous test especially for the interface tracking method
and its implementation. The parameters were set as follows: the density inside the drop,
ρi = 1 g/cm3; the density of the external fluid,ρo= 0.01 g/cm3; the viscosity inside the
drop,µi = 0.01 poises (g/cm s); the viscosity of the external fluid,µo= 0.001 poises, the
undisturbed radius of the drop,R= 1 cm; and the amplitude of the perturbation,A= 0.03
cm. This problem was solved in a square computational domain with−2.4≤ x≤ 2.4 and
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FIG. 8. Grids used to test the advantages of using refined grids (at time= 2.4 s): (a) RL= 5, 5 (all cells are at
refinement level 5,h = 0.5); (b) RL= 5, 8 (the refinement level varies from 5 to 8,h varies from 0.5 to 0.0625);
and (c) RL= 8, 8 (all cells are at refinement level 8,h = 0.0625).

−2.4≤ y≤ 2.4, using adaptively refined meshes similar to that shown in Fig. 8b (but with
different refinement levels).

The position of the highest point on the drop was tracked as a function of time, and the
results using a 4, 8 mesh for an axisymmetric drop withσ = 5 g/s2 (dyn/cm) are shown in
Fig. 11. The period of the oscillations was computed by averaging the distances between
peaks in this figure. The results for two-dimensional and axisymmetric drops with different
surface tension coefficients (2 g/s2 and 5 g/s2) are compared to the analytical solutions in
Table 1. As seen in this table, the numerical solutions are in excellent agreement with the
analytical ones.



     

FIG. 9. Pressure andy-velocity contours obtained using a 5, 5 grid (top row), a 5, 8 grid (middle row), and
an 8, 8 grid (bottom row); time= 2.4 s.

FIG. 10. Shapes of the drop at time= 2.4 s obtained using a 5, 5 grid, a 5, 8 grid, and an 8, 8 grid.
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FIG. 11. Amplitude, A(t), of the oscillations of a drop as a function of time for an axisymmetric drop with
σ = 5 g/s2. The remaining parameters areρi = 1 g/cm3, ρo= 0.01 g/cm3, µi = 0.01 poises,µo= 0.001 poises,
R= 1 cm, andA(0)= 0.03 cm.

This test case was next used to examine the convergence rate of the solution with respect to
mesh size. In order to isolate the effect of the mesh size on the accuracy, the time step was set
to a constant (= 0.01 s). The two-dimensional problem withσ = 5 g/s2 was run on four dif-
ferent meshes, all with a lowest refinement level of 4, and the highest refinement level varied
from 5 to 8. The period of the oscillations computed on each grid, the relative error, and the
mesh size are tabulated on Table 2. The log10 of the error is plotted as a function of the log10

of a measure of the mesh size,happrox= (number of cells)−1/2, in Fig. 12. This figure shows
that the error decreases monotonically with decreasing mesh size and that the convergence
of the solution with respect to mesh size is close to linear (except for the rightmost seg-
ment, the endpoint of which is from a very coarse mesh). This convergence behavior is the
best typically seen when interfaces are resolved on stationary grids. Tracking the interface
explicitly reduces the error, but does not change the order. The inconsistencies near refine-
ment interfaces discussed in the previous section also contribute to a decrease in the overall
convergence rate of the solution. However, this drawback is offset by the fact that the same
degree of accuracy can be obtained with significantly fewer cells using local refinement.

4.3. Simulation of Cell-Entry Micropipet Experiment

One of the most common techniques used to study the deformation of cells is the cell-entry
micropipet assay. This assay consists of pulling a portion of the cell or the entire cell into a

TABLE 1

Comparison of the Period of the Oscillations of a Drop Obtained from

the Simulations to the Analytical Solutions [35]

σ(g/s2) λnumerical λanalytical Relative error

Two-dimensional
2 1.847 1.814 1.8%
5 1.161 1.147 1.2%

Axisymmetric
2 1.605 1.576 1.8%
5 1.012 0.997 1.5%
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TABLE 2

Error in the Period of the Oscillations of a Two-Dimensional Drop as a Function

of Mesh Size (λanalytical = 1.147,σ = 5 g/s2, hmax = 0.3125)

Refinement Number of happrox Relative
levels cells = (# cells)−1/2 hmin λnumerical error (%)

4, 5 160 0.0790569 0.15625 1.244 8.45
4, 6 304 0.0573498 0.078125 1.174 2.35
4, 7 676 0.0384577 0.039063 1.166 1.66
4, 8 1456 0.0262106 0.019531 1.161 1.22

micropipet of set diameter with a constant suction pressure. The experiments are recorded on
video, and the distance between the leading edge of the cell and the tip of the pipet (projection
length orL p) is plotted as a function of time. From this plot and by assuming a constitutive
relation between applied stress and cellular deformation, mechanical parameters for the
cell can be calculated. This technique has been used in conjunction with several models to
study artificial lipid vesicles [11] and several types of cells including red blood cells [11],
leukocytes (neutrophils [36–39] and granulocytes [40]), and lymphocytes [41].

This assay is simulated in axisymmetric coordinates using parallel walls to represent the
micropipet and initializing the cell to a sphere (cell without a nucleus) or two concentric
spheres (cell with a nucleus) near the entrance of the pipet. Outflow boundary conditions
are enforced at the end of pipet and far field conditions are implemented at the remaining
boundaries. The resultant force on the cellular membranes is computed by assuming the
membranes hold isotropic tensions only, i.e.,

σ = T0+ K
1A

A0
, (42)

whereT0 represents the interfacial tension due to the phase boundary between hydrophobic
membrane components and water based surroundings, and the second term is due to the

FIG. 12. Logarithmic plot of the error in the period of the oscillations as a function of an approximate mesh
size: (number of cells)−1/2. The number of cells for the (4, 5), (4, 6), (4, 7), and 4, 8 grids are 160, 304, 676, and
1456, respectively.
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elasticity of the plasma membrane and associated cortex [42].K is the isothermal area
compressibility modulus, and1A/A0 is the fractional area change of the membrane with
respect to the unstressed area,A0. This unstressed area is set by the initial discretization
of the membrane. Several biological membranes have been successfully modeled using
Eq. (42), at least in some circumstances [11, 39]. The resultant surface force is then

f
⇀

S = f
⇀

mech= ∂(σe⇀t )

∂s
ds (43)

and is discretized using Eq. (41). A similar model was used by Jan to study the effects of
surfactants in contaminated bubbles [26].

The parameters in the simulations are set in accordance with the experiments of Needman
and Hochmuth [43]: the cell radius is 4µm, the pipet radius is 2µm, and suction pressures
of 1 and 2 kPa are used. The density of all fluids is set to a constant,ρ= 107g/cm3 (this
constant is seven orders of magnitude higher than the observed density to allow the use of
a larger time step, but since the flow is near the Stokes limit, the effect of this larger density
on the solution is minimal [30]). The viscosity of the outer media is set to four orders of
magnitude smaller than the cytoplasmic viscosity,µcytoplasm(larger viscosity ratios did not
change the solution significantly [30]).

Three mechanical models for the cell are used: (a) a Newtonian fluid surrounded by a pre-
stressed cortical shell (K = 0), (b) a Newtonian fluid surrounded by an elastic membrane,
and (c) a Newtonian fluid with a more viscous nucleus inside. The first mechanical model
has been used by experimentalists to analyze micropipet data for leukocytes [39, 40, 43] and
it predicts the behavior of these cells at large deformations, but not at small deformations.
Parameters on the same order as the values obtained by these experimentalists were used for
the first run:T0= 0.04 dyn/cm, andµcytoplasm= 103 dyn s/cm2. Figure 13 shows snapshots
in time of the pressure and speed contours of a cell entering a pipet with a suction pressure of
2 kPa using this model. As expected, two flow regimes are observed. In the first regime (time
= 0.003 s in Fig. 13) the cell is not in contact with the pipet and the flow is controlled by the
fluid outside the cell. A pressure gradient exists inside the pipet, and the velocity of the fluid
is a maximum in the gap between the walls at the tip of the pipet and the cell. When the cell
makes contact with the pipet, the flow inside the pipet becomes plugged and gains control
of the problem (time= 0.03 s). The experimental data are obtained once this second flow
regime is established. The pressure of the fluid inside the pipet (outside the cell) becomes
constant, a pressure gradient develops inside the cell, and the maximum pressure occurs at
the tip of the pipet where the cell makes contact; the maximum speed decreases and the flow
between the pipet wall and the cell surface is minimal. These trends continue throughout
the remaining frames of Fig. 13. At later times, contrary to experimental evidence (e.g.,
[43]), the trailing edge of the cell bulges into the pipet while a peripheral portion of the
cell remains near the tip. Figure 14 shows how a cell with a higher surface tension enters
the pipet entirely as is seen experimentally [(e.g., [43]). However, the surface tension for
leukocytes has been measured to be as low as in the simulation of Fig. 13, suggesting that
the Newtonian drop model does not completely capture the mechanical behavior of these
cells even at large deformation.

One source of numerical error in these simulations is the current implementation of the
velocity adjustments performed to avoid contact of the interface with the wall (discussed
in Section 3.3). At each time step, these velocity adjustments cause a small loss in the
volume of the cell (about 0.0001%). However, due to the large number of times that these
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FIG. 13. Pressure (left) and speed (right) contours of a cell modeled as a Newtonian drop entering a pipet
with a suction pressure of 1 kPa. The pressure is in units of mg/(µmds2)= 10 kPa and the speed has units of
µm/ds. The mechanical parameters of the cell areT0= 0.04 dyne/cm,K = 0, andµcytoplasm= 103dyne s/cm2. The
grid used refinement levels of 6, 8, and 9 (6 for the background, 8 for intersected cells, and 9 for proximity of the
interface to the pipet).
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FIG. 14. Cell modeled as a Newtonian drop completely entering a pipet with a suction pressure of 2.5 kPa.
The mechanical parameters of the cell areT0= 1 dyne/cm,K = 0, andµcytoplasm= 103 dynes/cm2. RL= 6, 8, 9
(6 for the background, 8 for intersected cells, and 9 for proximity of the interface to the pipet).
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FIG. 15. Projection length vs time for a cell modeled as a Newtonian drop (mechanical parameters as in
Fig. 13) aspirated at two different suction pressures: (a) 1 kPa; (b) 2 kPa.

operations are performed in the micropipet simulations, this error accumulates leading to
volume losses of about 15%. Decreasing the size of the smallest computational cells (the
ones between the interface and the pipet) by half reduces this volume loss by more than
50%. To avoid increasing the number of computational cells, the velocity adjustments on
the interface must be communicated to the incompressible fluids. One way to achieve this
is described in Section 3.3.

The Newtonian-drop model is used to compare the effects of suction pressure on the
projection length of the cell into the pipet (Fig. 15). Figure 15 shows that doubling of the
suction pressure increases the rate of entry by about two. This trend was seen experimentally
by Needham and Hochmuth [43].

The other two mechanical models were compared to the Newtonian-drop model using
a suction pressure of 2 kPa. In the model with the elastic membrane the parameters are
T0= 0.04 dyn/cm,K = 100 dyn/cm andµcytoplasm= 103 dyn s/cm2. In the model of a cell
with a nucleus the parameters for the cytoplasm and external membrane areµcytoplasm=
102 dyn s/cm2, and T0= K = 0.04 dyn/cm; and the parameters for the nucleus and the
nuclear membrane areµnucleus= 103 dyn s/cm2, T0= 0.04 dyn/cm andK = 2 dyn/cm. The
value of the elastic modulus for the second model is on the order of the values measured for
lipid bilayers and red blood cells [11]. The parameters in the last model are on the order of
those measured for lymphocytes [41]. The different mechanical models affect both the shape
of the cells and the contact angle between the tip of the pipet and the outer portion of the
cell, as seen in Fig. 16. Figure 17 shows the projection length of the cell as a function of time
for the three models. As shown in this figure, compared to the Newtonian-drop model the
elasticity of the membrane retards the entry of the cell into the pipet and this effect increases
as the cell becomes more elongated. This behavior is similar to the behavior of red blood
cells entering a pipet [44]. The cell with a less viscous cytoplasm and a more viscous nucleus
enters the pipet more rapidly initially, and slows down as the nucleus starts deforming into the
pipet. These changes in rate of entry are observed in micropipet experiments with leukocytes
([e.g., [43]). However, due to the low surface tension and the lower cytoplasmic viscosity in
this model, at later times a portion of the cell extends past the tip outside the pipet (contrary
to experimental observations). There is evidence that in some cells cytoplasmic elements
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FIG. 16. Comparison of the shape of a cell entering a micropipet with a suction pressure of 2 kPa using
three different mechanical models: (a) a Newtonian fluid with constant surface tension (RL= 6, 8, 9); (b) a
Newtonian fluid enclosed by an elastic membrane (RL= 7, 8, 9); and (c) a Newtonian fluid with a more viscous
nucleus (RL= 7, 8, 10; a refinement level of 10 is also used for proximity of the interfaces). (See text for problem
parameters.)

connect the outer membrane to the nuclear membrane [45] and such elements could prevent
the outer membrane from extending outside the pipet. These cytoplasmic elements could be
incorporated in the methods of this paper using elastic links which connect discrete points
on the cell membrane to discrete points on the nuclear membrane.

4.4. Simulation of Cells Adhering Under Flow

Specific cell adhesion frequently occurs in circulatory systems. In this section a two-
dimensional version of this case is presented. As mentioned in the Introduction, biological
cells adhere by forming bonds between mobile membrane molecules, while the membranes
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FIG. 17. Comparison of the projection length of a cell entering a pipet as a function of time using three
different mechanical models (the letters correspond to the models in Fig. 16).

deform and colloidal forces act to repel the cells. The resultant surface force for each cell is

f
⇀

S = f
⇀

mech+ f
⇀

bonds+ f
⇀

ns, (44)

where f
⇀

mechis due to the membrane’s resistance to deformation (as in Eqs. (42) and (43)),
f
⇀

bond is due to molecular bonds andf
⇀

ns results from the colloidal interactions. The number
of bonds per segment is found by discretizing the reaction–diffusion equations on the
interfaces, using reaction rates which are functions of the distance between the membranes
(as proposed by Demboet al.[6]). Since the membranes move arbitrarily and are discretized
independently of one another, a segment from one membrane can interact with more than
one segment on the other membrane. Hence, the reaction term and the non-specific force
are computed by visiting all the segments on the other membrane; if the distance between
the centroids of the two segments(lm) is less than a threshold(l th), the segment pair is
given the opportunity to interact. If bonds form during the interaction, a link is established
between the segments. The reaction term used in the diffusion–reaction equations is the
sum over all the segments on the other membrane. The force exerted by each bond link on
each segment is computed as

f
⇀

bondsi = nikκb
(∣∣l⇀mik

∣∣− l0
) l

⇀

mik

|l⇀mik |
, (45)

wherenik is the number of bonds between thei th segment of one membrane and thekth
segment of the other,κb is a spring constant assigned to the bond,l

⇀

mik is a vector from the
centroid of thei th segment of one membrane to the centroid of thekth segment of the other,
andl0 is the pre-stressed length of the bond. The idea of treating molecular bonds as springs
was proposed by Bellet al. [3] and has been used successfully by many other researchers.
The force due to the non-specific interactions is computed as

f
⇀

nsi = −λss

(
1

|l⇀mik |
+ 1

δ

)
exp

(
− |l

⇀

mik |
δ

)
l
⇀

mik

|l⇀mik |2
1si , (46)

whereδ is a measure of the combined thickness of the glycocalyx of both cells, andλss is
a measure of the ease with which the polymer layer between the cells can be compressed.
This expression is also due to Bellet al. [3]. The total adhesive force on thei th segment is
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TABLE 3

Mechanical Properties for the Cells in the Simulations of Cell Adhesion

Cell 1 (lower) Nucleus of cell 1 Cell 2 (upper) Nucleus of cell 2

Run µ T0 K µ T0 K µ T0 K µ T0 K

1 0.2 100 100 1.0 200 200 0.2 100 100 1.0 200 200
2 0.2 50 50 — — — 0.2 150 150 1.0 200 200

Note. The units of viscosity are ng/(µm ms) (= 10−2 poises); the units forT0 andK are ng/ms2 (= 10−3 dyne/cm).

computed by summing the contributions of all other segments on the opposite membrane
(summing overk). For details on the implementation of this procedure see [30].

The adhesion of two deformable cells under shear flow is simulated using a square
domain 40µm in length, with periodic east and left boundaries. No-slip boundary conditions
are enforced at the north and south boundaries, where the velocities are set to−25 and
25µm/ms, respectively. The resulting shear is comparable to that in an arteriole [46].
The cells are initialized to circles 4µm in radius and in very close proximity so molecular
interactions can commence immediately (i.e., min(lmik ) ≤ l0). One cell is placed higher than
the other so the velocity gradient moves them past one another. Two cell pairs are examined:
(i) identical nucleated cells, and (ii) one nucleated cell with a more flaccid cell lacking a
nucleus. The mechanical properties of the cells and their nuclei are listed in Table 3. The
density of all fluids is set to 0.1 ng /µm3(= 100 g/cm3) and the viscosity of the immersing
fluid is set to 0.1 ng/(µm ms)(= 10 dyn s/cm2). The adhesion parameters (reaction rates,
spring parameters for the bonds, receptor number, diffusivity, colloidal parameters) are
set to typical values from the literature adjusted for two-dimensional computations when
appropriate.

Figure 18 shows a close-up, near the area of contact, of the adaptively refined mesh used
for run 2 (a similar mesh was used for the first run). The computational cells in the area of
contact between the cells are 128 times smaller than the largest cells in the grid.

Figure 19 shows the evolution of the adhesion for the two cell pairs. As expected, the shear
flow causes the cells to move past one another, elongate, and eventually detach. Figures 20
and 21 show plots of the bond density as a function of a coordinate along the membrane of
the cells at different times for runs 1 and 2, respectively. The figures show that, as expected,
the density of the bonds in a localized region of the surfaces of the cell (the contact area)
increases as time passes. The curves for the two cells in run 1 are almost identical. The bond
distribution is almost symmetric, with the majority of bonds located near the center of the
area of contact. The contact area is smallest, while the maximum concentration of bonds
is largest at time= 0.8 s; by time= 1.0 s all bonds have detached. The curves for the cells
in run 2, on the other hand, are significantly different from one another. In this case, the
distribution of bonds shifts with time toward one side of the contact area, and the majority
of the bonds in the more flaccid cell concentrate in a very small portion of the membrane.
At time= 1 s, the cells are still attached, but the contact area has begun to decrease.

Figure 22 shows the total number of bonds as a function of time for the two runs. Initially
(time5 0.1 ms), the total number of bonds is the same for the two cell pairs until the cells
have deformed significantly and the cell mechanics begins to play a role. At this time, the
curve for the cells with different mechanical properties lags the other. In both curves, the
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FIG. 18. Representative grid used for the simulations of cell adhesion zoomed near the area of contact.

number of bonds increases to a maximum (the same value for both curves), after which a
sharp decrease is observed. Also in both cases, the rate of bond increase is non-monotonic.
The sharpest increase in this rate seems to correspond to the time when the shear begins to
pull apart the cells (compare the frames in the third row of Fig. 19). However, more studies
are needed to determine the cause of this behavior.

5. CONCLUSIONS

One of the major goals of investigators in the area of cell adhesion is to establish a
quantitative relationship between molecular parameters and the outcome of cell adhesion.
Three major difficulties complicate the search for such a relationship: (i) the relevance of
many cellular and extracellular events (external forces, cell mechanics and deformation,
diffusion and specific binding of molecules, and non-specific interactions); (ii) the different
length scales on which these events occur; and (iii) uncertainties in the mechanics of cell
deformation. Similarly, one of the major goals of researchers studying cell mechanics is to
elucidate the constitutive equations describing the relationship between the forces experi-
enced by cells and their deformation. A major difficulty encountered by these researchers
is that the analysis of experimental data requiresa priori knowledge of this constitutive
relationship.

A multi-fluid code with adaptive refinement, staggered variable arrangement, and ar-
bitrarily deforming fronts tracked with a Lagrangian–Eulerian method was developed to
specifically address those difficulties. The generation of different mechanical models for
the cell is allowed by a modular treatment of membrane mechanics and fluid bodies. The
method was validated with a drop deforming in shear and the oscillations on the surface of a
drop. Results agreed with other numerical results and analytical solutions. While thorough
convergence rate and efficiency tests were not performed, they are sufficient to establish the
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FIG. 19. Evolution of the adhesion of two cell pairs deforming under shear: (a) identical nucleated cells
(run 1); (b) a nucleated cell with higher surface tension and elastic modulus (top) and a cell with no nucleus and
lower surface tension (bottom) (run 2). RL= 6, 9, 12 (6 for the background, 9 for intersected cells, and 12 for
proximity of the interfaces).
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FIG. 20. Temporal evolution of the bond density on the surfaces of two identical cells adhering under shear
(run 1).s is a coordinate along the length of the membrane of each cell, beginning atθ = 0 on the undeformed
cell and increasing in a counterclockwise direction (for clarity, the curves for each cell were slightly shifted to
align the peaks). The curves on the left correspond to the lower cell and the curves on the right are for the upper
cell. Each curve is marked with the time in ms.

overall consistency of the method and the net efficiency benefit of local refinement. More
rigorous testing of these elements for the grid generation methods used in this work have
been done by others [22, 23].

Cell-entry micropipet experiments (a common tool for studying cell mechanics) and
the adhesion of cells under flow (a common situation encountered both experimentally
and under physiological conditions) were simulated to exemplify the capabilities of the
code. Three very different models for the cell mechanics were analyzed with only minor
changes to the code. The different models affect both the shape and the rate of entry
of cells into a micropipet. The elasticity of the membrane decreases the rate of entry of
the cell into the pipet, and this decrease continues as the cell becomes more elongated.
This behavior agrees qualitatively with that seen for red blood cells. The presence of a

FIG. 21. Temporal evolution of the bond density on the surfaces of two different cells adhering under shear
(run 2).s is a coordinate along the membrane as described in Fig. 20.
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FIG. 22. Comparison of the total number of bonds as a function of time during the adhesion of (a) two identical
cells (run 1), and (b) cells with different mechanical properties (run 2).

more viscous nucleus causes a non-monotonic rate of entry of the cell into the pipet.
This behavior agrees qualitatively with that seen for neutrophils. The evolution of the
shape of the cell as it enters the pipet, as well as the rate of entry of the cell into the
pipet, can be compared directly with experimental data. In addition, the code provides
information about the spatial variations in fluid pressure and velocity that is not currently
available from experimental methods, but that agrees with the expected flow patterns of the
problem.

The simulations in Section 4.4 show the capabilities of the code as a tool to study cell
adhesion. The code computes the number and distribution of molecular bonds on the cell
surface, the distribution of free molecules, and the shape of the cell at every time step.
In addition, the code provides information about the spatial variation in pressure and fluid
velocity (results not shown). A relationship between events occurring on the scale of the cell
diameter and those occurring at the gap between the cells has been successfully established.
For the parameters tried, the mechanical properties of the cells were shown to affect the
temporal evolution of the contact area, as well as the total number of bonds between the
two cells at a given time. This latter effect is very important since the number of bonds
can determine the chemical signal between the cells and, therefore, the subsequent cellular
response.

This method can be used to study the passive deformation of specific cells and find
an appropriate mechanical model. It can be used to decide when simple models for cell
adhesion are valid and will allow the impact of cell deformation on detachment force to be
determined. Finally, the method can be used to generate information about transmembrane
molecular bonds from simple “macroscopic” adhesion assays (e.g., cell separation in shear
flow).
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